Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38047592

RESUMO

Enormous efforts have been made to convert biomass to liquid fuels and products catalytically. Long molecules with a suitable structure are ideal precursors for fuels and value-added products. Here, a C21 oxygenate was synthesized for the first time in one step through aldol condensation of furfural and acetone over the amine-functionalized zirconium-based metal-organic framework (MOF), UiO-66-NH2. Structural changes of UiO-66-NH2 were investigated to improve the yield and evaluate the role of the ligand, cluster node, defectiveness, modulator, surface area, and textural properties on the product distribution. We demonstrate the possibility of making long-chain oxygenates without using vegetable oil-derived fatty acids toward 100% waste biomass-derived renewable fuels, lubricants, and surfactants.

2.
ChemSusChem ; 11(13): 2124-2129, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29719133

RESUMO

Energy-efficient catalytic conversion of biomass intermediates to functional chemicals can make bio-products viable. Herein, we report an efficient and low temperature aerobic oxidation of xylose to xylaric acid, a promising bio-based chemical for the production of glutaric acid, over commercial catalysts in water. Among several heterogeneous catalysts investigated, Pt/C exhibits the best activity. Systematic variation of reaction parameters in the pH range of 2.5 to 10 suggests that the reaction is fast at higher temperatures but high C-C scission of intermediate C5 -oxidized products to low carbon carboxylic acids undermines xylaric acid selectivity. The C-C cleavage is also high in basic solution. The oxidation at neutral pH and 60 °C achieves the highest xylaric acid yield (64 %). O2 pressure and Pt amount have significant influence on the reactivity. Decarboxylation of short chain carboxylic acids results in formation of CO2 , causing some carbon loss; however, such decarboxylation is slow in the presence of xylose. The catalyst retained comparable activity, in terms of product selectivity, after five cycles with no sign of Pt leaching.

3.
ChemSusChem ; 10(12): 2566-2572, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28407438

RESUMO

Utilization of renewable carbon source, especially non-food biomass is critical to address the climate change and future energy challenge. Current chemical and enzymatic processes for producing cellulosic sugars are multistep, and energy- and water-intensive. Techno-economic analysis (TEA) suggests that upstream lignocellulose processing is a major hurdle to the economic viability of the cellulosic biorefineries. Process intensification, which integrates processes and uses less water and energy, has the potential to overcome the aforementioned challenges. Here, we demonstrate a one-pot depolymerization and saccharification process of woody biomass, energy crops, and agricultural residues to produce soluble sugars with high yields. Lignin is separated as a solid for selective upgrading. Further integration of our upstream process with a reactive extraction step makes energy-efficient separation of sugars in the form of furans. TEA reveals that the process efficiency and integration enable, for the first time, economic production of feed streams that could profoundly improve process economics for downstream cellulosic bioproducts.


Assuntos
Biotecnologia/métodos , Celulose/química , Biomassa , Glucose/química , Polimerização , Solubilidade , Madeira/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...